If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40y^2=15y
We move all terms to the left:
40y^2-(15y)=0
a = 40; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·40·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*40}=\frac{0}{80} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*40}=\frac{30}{80} =3/8 $
| 85=10d+15 | | 3/4z=1/4+12 | | 80=8z+16 | | x/12-18+2=-12 | | 5d=50 | | 5-3x2=7-2x5 | | 9.5x-2.3x-5=75.64 | | 2/5h=3/5 | | 6m-11=2÷9m-1 | | 7x-6=-17-4x | | 2(4x+2)=3(x-6) | | 6m-11=12÷9m-1 | | 3d+9=10d-13 | | R+75=r-74 | | x(x+0,1)+3,1=3,1 | | (a=3) | | 0.8x-4=0.3x+7 | | 21-5x=4x-3x | | 2g-3+4g=7 | | 8v+8=3v-4=2 | | 7x-10+3x+9=180 | | 3x+4x-1=180 | | 2(x-0,6)-0,3(x-4)=-0,51 | | 2,8-3,2a=-4,8-5,1a | | 52+Q+23=b | | x²+12x-7=0 | | (2x−1)2=0 | | 3x-2(5+x)=1 | | 5/17=13/v | | -3x+10=-2x+10 | | a-20=30 | | w=124 |